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Relaxation in kinetic models on alternating linear chains
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A restricted dynamics, previously introduced in a kinetic model for relaxation phenomena in linear polymer
chains, is used to study the dynamic critical exponent of one-dimensional Ising models. Both an alternating
isotopic chain and an alternating-bond chain are considered. In contrast with what occurs for Glauber dynam-
ics, in these two models the dynamic critical exponent turns out to be the same. The alternating isotopic chain
with the restricted dynamics is shown to lead to Nagel scaling for temperatures above some critical value.
Further support is given relating the Nagel scaling to the existence of multiple~simultaneous! relaxation
processes, the dynamics apparently not playing the most important role in determining such scaling.
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I. INTRODUCTION

The scaling hypothesis of Halperin and Hohenberg@1#
relates the time scalet and the correlation lengthj, and
introduces the dynamic critical exponentz. In the case of
Ising models,z was for a long time believed to be universa
depending on the nature of conserved quantities and of th
features, for instance dimensionality@2#, which determine
their static universality class. However, it is now well esta
lished that for some simple systems this exponent is non
versal @3–9#. In particular, in the case of one-dimension
Glauber dynamics@10# the alternating isotopic chain@7# pre-
sents a universal behavior~in the sense that it leads to th
same value of the dynamic critical exponent as the homo
neous chain!, whereas the alternating-bond chain does
@7–18# ~however, see Ref.@19#!. This breakdown of the dy-
namic scaling hypothesis is due to the different energy b
riers determining the diffusion constant and the correlat
length, and hence entering into the value of the dyna
exponentz. This exponent is also typically strongly affecte
when the dynamics takes place on a self-similar backgrou
For instance, the study of the Glauber dynamics in branch
and nonbranching Koch curves as well as in the Sierpin
gasket@20# indicates thatz is non universal. Nevertheless, a
analysis of the critical Glauber dynamics on the Fibonac
chain quasicrystal@9# shows that the dynamic exponentz is
identical to that obtained for the alternating-bond Glau
chain. Another interesting line of research that was also
lowed @8# is to understand how different dynamics affect t
universality. This work is partly aimed as another contrib
tion to such an understanding.

Kinetic Ising models were also used in a variety of co

*Also at Programa de Simulacio´n Molecular del Instituto Mexi-
cano del Petro´leo.
1063-651X/2001/63~2!/026114~8!/$15.00 63 0261
se

-
i-

l

e-
t

r-
n
ic

d.
g
y

i-

r
l-

-

-

texts not limited to critical dynamics. In fact, in a previou
paper @21# we introduced a quasi-one-dimensional kine
Ising-like model to study relaxation phenomena in line
polymeric chains, including a region close to the glass tr
sition. In our original model the chains are made up ofN
segments, each of which may be found in two possible
entations, and the Hamiltonian was chosen so as to reduc
one giving the intramolecular energy of the Gibbs–di Marz
lattice model@22#. For the stochastic dynamics, we adopted
rule of transition for the configurational changes which w
tied to the creation or disappearance of flexes. As a con
quence of this restricted dynamics, only some states are
lected, and, in magnetic language, this implies that in
model the domain wall motion is through a biased rand
walk. The purpose of this paper is, on the one hand, to
troduce restricted dynamics into two one-dimensional al
nating kinetic Ising models that have exact solutions with
Glauber dynamics, namely, the isotopic alternating chain
the alternating-bond chain. On the other hand, we will u
these extensions to examine the dynamical critical expon
and, in the case of the isotopic chain, whether the inclus
of several relaxation times may be related to multifrac
behavior. This last goal is motivated by the fact that rec
dielectric susceptibility measurements in several gla
forming systems, and covering wide ranges of tempera
and frequency@23–25#, suggested that the master curve
which all measurements are shown to scale~the Nagel plot!
may be understood in terms of multiple relaxation process
In fact the existence of simultaneous relaxation processe
assumed to be connected to multifractality, much in the sa
way that this concept is present in theories of chaos. V
recently we showed that an alternating isotopic chain w
Glauber dynamics leads to Nagel scaling@26#, and the ques-
tion arises as to the role that a particular dynamics may p
in such a scaling. By examining the model with a restrict
dynamics, we aim at shedding some light into this issue.
©2001 The American Physical Society14-1
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The paper is organized as follows. Section II deals w
an alternating isotopic chain, while Sec. III is devoted to
alternating-bond chain. We derive the wave-vec
frequency-dependent susceptibility, the equations govern
the time evolution of the wave-vector-dependent magnet
tion, and the critical exponentz in both cases. In Sec. IV we
address the issue of whether the restricted dynamics lea
a Debye-like scaling of the response functions~as in the
uniform chain!, or whether the so-called Nagel plot is usef
in the case of an isotopic alternating chain. We close
paper in Sec. V with some concluding remarks.

II. ALTERNATING ISOTOPIC CHAIN

The model consists of a closed linear chain withN sites
occupied by two isotopes~characterized by two differen
spin relaxation times! that are alternately arranged. Th
Hamiltonian is the usual Ising Hamiltonian given by

H52J(
j 51

N

s js j 11 , ~1!

wheres j is a stochastic~time-dependent! spin variable as-
suming the values61, andJ is the coupling constant. Th
configuration of the chain is specified by the set of valu
$s1 ,s2 , . . . ,sN% at time t. As will be argued below, the
Hamiltonian will turn out to be not all that relevant in th
specific calculations. Nevertheless it is necessary to de
the states involved in allowed transitions.

Instead of considering the Glauber dynamics, we assu
a kind of transition associated with the motion of doma
walls. The idea is similar but not identical to previous wo
by others in which either the domain wall motion is strong
suppressed at low temperatures@3,4# or is through a one-
dimensional random walk@27#. In our case the transition
associated with thei th spin takes the form

Ti$s1 , . . . ,s i ,s i 11 , . . . ,sN21 ,sN%→
$s1 , . . . ,s i 21 ,2s i ,s i 11 , . . . ,sN21 ,sN%, ~2!

and we impose a biased random walk for the domain w
motion @28#. In order to also account for the presence of t
isotopes, we take the transition probabilities to be given

wi~s i 21 ,s i !5a i~12gs i 21s i !. ~3!

Here g5tanh(J/kBT), kB being the Boltzmann constan
andT the absolute temperature, anda i is the inverse of the
relaxation timet i of spin i in the absence of spin interac
tions. It should be pointed out that the rule of transiti
stated in Eq.~2! allows for single site excitations such th
the transitions are not correlated. Further, the choice mad
Eq. ~3! immediately implies that detailed balance does
hold for this model and also that not every state in the ph
space of the system is accessible. In particular, one sh
note that within this model no equilibrium state exists,
though when the time goes to infinity a steady state is ev
02611
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tually attained. This feature is shared by other purely s
chastic models such as the biased Ising lattice gas an
many variations@29#.

If we now leta1 anda2 represent the inverses of the fre
spin relaxation times of chains composed solely of spins
species 1 or 2, respectively, then we can seta i5ā1

2(21)i ā2, whereā15(a11a2)/2 andā25(a12a2)/2.
The time dependent probabilityP(s1 ,s2 , . . . ,sN ;t)

[P($sN%,t) for a given spin configuration satisfies the ma
ter equation

dP~$sN%,t !

dt
52(

i 51

N

wi~s i 21 ,s i !P~$sN%,t !

1(
i 51

N

wi~s i 21 ,2s i !P~Ti$s
N%,t !. ~4!

The dynamical properties we are interested in requir
knowledge of some moments of the probabilityP($sN%,t).
Hence we introduce expectation values and correlation fu
tions defined as

qi~ t !5^s i~ t !&5 (
$sN%

s i P~$sN%,t !, ~5!

r i , j~ t !5^s i~ t !s j~ t !&5 (
$sN%

s is j P~$sN%,t ! ~6!

and

ci , j~ t8,t81t !5Q~ t !^s i~ t8!s j~ t81t !&

5 (
$sN%,$sN8%

s i8P~$sN8%,t8!s j p~$sN%u$sN8%,t !,

~7!

whereQ(t) is the Heaviside step function, and the sums r
over all possible configurations compatible with our rule
motion. The second equality of Eq.~7!, which gives a formal
definition of the time-delayed correlation function, involve
p($sN%u$sN8%,t), the conditional probability of the chain
having the configuration$sN% at time t81t provided it had
the configuration$sN8%5$s18 ,s28, . . . ,sN8 % at time t8. Mul-
tiplying the master equation by the appropriate quantiti
and performing the required summations, we obtain the
of time evolution equations that will be used in our lat
development. These are given by

dqj

dt
522a j~qj2gqj 21! ~8!

and

dci , j~ t8,t81t !

dt
5r i , j~ t8!d~ t !22a j@ci , j~ t8,t81t !

2gci , j 21~ t8,t81t !#. ~9!
4-2
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We now impose translational invariance, and introdu
q̃k , the ~spatial! Fourier transform ofqj , the t8→` limit of
the ~temporal! Fourier transform ofcl(t8,t81t)[ci , j (t8,t8
1t) ~with l 5 j 2 i ) denoted byĉl(v), andC̃k(v), the spatial
Fourier transform ofĉl(v), defined through

qj5
1

AN
(

k
q̃kexp~ ik j !, ~10!

ĉl~v!5 lim
t8→`

1

2pE2`

`

cl~ t8,t81t !exp~2 ivt !dt, ~11!

and

C̃k~v![^s2ksk&v5
1

N (
l

ĉl~v!exp~2 ikl !. ~12!

In terms of these quantities, Eqs.~8! and ~9! may be re-
written, as

dCk

dt
5M kCk ~13!

and

iv ĉl~v!5r l
`22a l@ ĉl~v!2g ĉl 21~v!#, ~14!

respectively, where

Ck5S q̃k

q̃k2p
D , ~15!

M k5S 22ā1~12ge2 ik! 2ā2~11ge2 ik!

2ā2~12ge2 ik! 22ā1~11ge2 ik!
D . ~16!

r l
`5 limt→`r l(t) is the value of the pair correlation functio

corresponding to the stationary solution of the equations
motion in the limit t→`.

The solution to Eq.~13!, which yields the magnetization
is straightforward, namely,

Ck~ t !5eMktCk~0!. ~17!

The relaxation process of the wave-vector depend
magnetization is determined by the eigenvalues ofM k .
These are given by

lk
6522ā162Aā1

22~ ā1
22ā2

2!~12g2e22ik!. ~18!

It should be stressed that the eigenvalueslk
6 contain both

real and imaginary components. Therefore, the relaxation
lated to the real part of the eigenvalues will in general
modulated by the imaginary component, and care should
taken in defining an adequate correlation length for the c
cal dynamics. In fact, one can also associate this correla
length with the modulation of the oscillations. Such a cor
lation length diverges at the critical point, and hence
modulation eventually dissapears. This kind of behavior w
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already thoroughly discussed in the context of the o
dimensional isotropic ferromagneticXY model in an inho-
mogeneous transverse field@30#. In any case, the inverses o
the (k-dependent! relaxation timestk

6 of the6kth modes are
obtained from the real part oflk

6 . In the critical region, that

is whenT→0 andk→0, lk
2→24ā1, while lk

1→0. This
means that the critical mode is the one corresponding tolk

1 .
As for the relaxation time, in this limit one obtains

Re~2lk
1!52

1

tk
;

4~ ā1
22ā2

2!

ā1

j22F11
~jk!2

2 G , ~19!

where we have identified the correlation lengthj as j
;eJ/kBT by comparing the former expression with the one
the dynamic scaling hypothesis 1/tk;j2zf (jk). Therefore
we find z52, which is precisely the same result as for t
alternating isotopic Glauber chain@7#. Note, however, that
this correlation length corresponds to the one of an Is
model with an effective exchange constantJ/2 . This can be
easily seen by noting that the equations of motion for
two-spin correlations are in our case formally identical
those in the Glauber chain, but in the lattergG
5tanh(2J/kBT). Interestingly enough,j also corresponds, a
expected, to the correlation length of the steady state atta
by the system. The role of the effective constantJ/2 was
already pointed out in the case of the model introduced
Ref. @21#.

Now we turn to the calculation of the other interestin
response function, namely, the frequency and wave-vec
dependent susceptibilitySk(v), which, by virtue of the
fluctuation-dissipation theorem@31#, is defined by

Sk~v!5
^sks2k&`

kBT
2

iv^sks2k&v

kBT
, ~20!

where ^sks2k&`51/(12g cosk)cosh(J/kBT) is the static
correlation function, and̂sks2k&v the Fourier transform of
the dynamic one. After some rather lengthy but not too co
plicated algebraic manipulations starting with Eq.~14!, we
arrive at

Sk~v!5
1

kBT~12g cosk!cosh
J

kBT

3F12
iv@ iv12ā1~11ge2 ik!#

~ iv12ā1!224ā2
214g2~ ā2

22ā1
2!e22ikG .

~21!

The result embodied in Eq.~21! constitutes the prope
framework in which to discuss the issue of Nagel scaling
the relaxation of a linear chain with translational invarian
and restricted dynamics. This will be postponed until S
IV. For the time being, we just quote the equivalent result
the isotopic chain with Glauber dynamics@7,26#, namely,
4-3
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Sk
G~v!5

1

kBT~12gGcosk!cosh
2J

kBT

3F 12
iv@ iv1ā1~11gGcosk!#

~ iv1ā1!22
1

2
gG

2 a1a2~11cos 2k!2ā2
2G ,

~22!

which is also required for such a discussion. In the next S
III we will consider the other simple alternating Ising cha
including the dynamics allowed by our rule of transition.

III. ALTERNATING-BOND CHAIN

The model consists of a closed linear chain withN sites,
and is characterized by different coupling constantsJj ~to be
specified below!. N is taken to be an even integer, and pe
odic conditions are also imposed. This model can be app
in the description of dimerized structures and the Ham
tonian is again of the Ising type, i.e.,

H52(
j 51

N

Jjs js j 11 , ~23!

where the parameters and variables are defined as in Se
Once more, and for the same reasons as above, we sp
the Hamiltonian to have a precise definition of the states
intervene in allowed transitions, but it will play no furthe
relevant role in the calculations that follow.

Considering again the same kind of biased random w
for the domain wall motion and the rule of transition give
by Eq. ~2!, in this case the transition probabilities are tak
to be

wi~s i 21 ,s i !5a~12b i 21s i 21s i !, ~24!

wherea is the inverse of the free spin relaxation time,b j
5tanh(Jj /kBT), and Jj5

1
2 (J11J2)2@(21) j /2#(J12J2).

HereJ1 andJ2 represent the coupling constants of two d
ferent uniform Ising chains, respectively. It is also conv
nient to introduce the quantitiesg15 1

2 @ tanh(J1 /kBT)
1tanh(J2 /kBT)# and g25 1

2 @ tanh(J1 /kBT)2tanh(J2 /kBT)#, so
that b j may be expressed asb j5g12(21) jg2. The analo-
gous forms of Eqs.~8! and ~9!, obtained using a simila
procedure, read

dqj

dt
522a~qj2b j 21qj 21! ~25!

and

dci , j~ t8,t81t !

dt
5r i , j~ t8!d~ t !22a@ci , j~ t8,t81t !

2b j 21ci , j 21~ t8,t81t !#. ~26!
02611
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As in the previous case, we now impose translational
variance, and again useq̃k , ĉl(v), and C̃k(v), defined in
Sec. II to rewrite Eqs.~25! and ~26! as

dFk

dt
5NkFk ~27!

and

iv ĉl~v!5r l
`22a@ ĉl~v!2b l 21ĉl 21~v!#, ~28!

where

Fk5S q̃k

q̃k2p
D , ~29!

Nk5S 22a~12g1e2 ik! 22ag2e2 ik

2ag2e2 ik 22a~11g1e2 ik!
D . ~30!

The solution to Eq.~27!, which yields the magnetization, i
again straightforward, namely,

Fk~ t !5eNktFk~0!. ~31!

The eigenvalues ofNk may be obtained very easily with
the result

l̄k
6522a~16Ag1

2e22ik2g2
2e22ik!, ~32!

and again contain real and imaginary components. Proc
ing as in the derivation of Eq.~19!, we find that the critical
mode corresponds tol̄k

2 , and that the relaxation time i
given by

Re~2l̄k
2!5

1

t̄k

;2aj̄22F11
~ j̄k!2

2
G . ~33!

Here, considering thatJ1.J2, the correlation lengthj̄ has
been identified asj̄;eJ2 /kBT by again comparing Eq.~33!

with the dynamic scaling hypothesis 1/t̄k;j̄2zf ( j̄k). There-
fore, we also findz52 in this case, which coincides with th
result derived above for the isotopic chain and, consequen
the restricted dynamics produces a dynamic critical expon
which is independent of the kind of interactions in the
models. Note that once more the correlation lengthj̄ corre-
sponds to that of an Ising model with an effective const
J2/2.

The dynamic scaling exponentz may also be derived in
this case by an alternative argument based on domain
motion. Consider the limitT→0, in which critical slowing
down occurs and domains are formed. According to Eq.~24!,
if a spin j is in the interior of the domain, in this limit
wj (s j 21 ,s j )→0 irrespective of the value ofb j 21; on the
other hand, if spin i belongs to a domain wall
wi(s i 21 ,s i)→2a, also independently ofb i 21. Therefore,
4-4
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in the low temperature limit,wj!wi , so that the dynamics
of the system is equivalent to a biased random motion of
domain wall for the Hamiltonian system, in this instance t
Ising model. Hence, within restricted dynamics, the rela

ation time t̄0 for the decay of a domain of sizej̄ ~which is
the correlation length associated with the steady state of

stochastic model! is such thatt̄0;j̄z, and may be related to
a biased random walk@5#. To this end, letN0 be the number
of spins that must flip to obtain a domain of sizej I ~the
correlation length of the Ising model!. Since the domain ha
the size of the biased random walk withN0 steps andz51

for the biased random walk,j I;N0. On the other hand,t̄0

;N0wi
21;j I /(2a). But j I5 j̄2, so that z52 for the

alternating-bond model for any choice ofJ1 andJ2.
Finally, for the sake of completeness, we will also co

pute the frequency and wave-vector-dependent susceptib

x̄k(v) of this model. Taking the same steps as in the cas
the isotopic chain, we find
-
m

ca
x
e
e-

t

l
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S̄k~v!5
^sks2k&`

kBT F12
iv~ iv12a12ag1e2 ik!

~ iv12a!214a2e22ik~g2
22g1

2!
G

1
^sks2k1p&`

kBT

2ivag2e2 ik

~ iv12a!214a2e22ik~g2
22g1

2!
,

~34!

with

^sks2k&`5
~12u1u2!@11u1u21~u11u2!cosk#

11u1
2u2

222u1u2cos 2k
,

~35!

^sks2k1p&`5
i ~11u1u2!~u22u1!sink

11u1
2u2

222u1u2cos 2k
, ~36!

and uj5tanh(Jj/2kBT), j 51 and 2. Again for the sake o
comparison, and in order to correct a misprint in the form
that appeared in Ref.@7#, we quote the equivalent result
using the Glauber dynamics, namely,
S̄k
G~v!5

^sks2k&`
G

kBT F 12
iv~ iv1a12ag8Gcosk!

~ iv1a!222a2@~g8G!22~dG!2#cos 2k22a2@~g8G!21~dG!2#
G

1
^sks2k1p&`

G

kBT

2adGv sink

~ iv1a!222a2@~g8G!22~dG!2#cos 2k22a2@~g8G!21~dG!2#

, ~37!
cy
l
t 0
ver,
ec-
ng
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(1

r-
the
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with

^sks2k&`
G5

~12u1
Gu2

G!@11u1
Gu2

G1~u1
G1u2

G!cosk#

11~u1
Gu2

G!222u1
Gu2

Gcos 2k
,

~38!

^sks2k1p&`
G5

i ~11u1
Gu2

G!~u2
G2u1

G!sink

11~u1
Gu2

G!222u1
Gu2

Gcos 2k
, ~39!

g8G5 1
2 tanh@(J11J2)/kBT#, dG52 1

2 tanh@(J12J2)/kBT#, and
uj

G5tanh(Jj /kBT), and j 51 and 2. This concludes our analy
sis of the alternating-bond chain with the restricted dyna
ics.

IV. SUSCEPTIBILITY AND SCALING BEHAVIOR

Thus far, we have examined the behavior of the criti
dynamic exponent. In this section we will continue our e
ploration by considering the scaling properties of the susc
tibility in the isotopic alternating chain. This is most conv
niently done through the quantity x(v)
[kBTS0(v)/^s0s0&` . It should be noted that if we look a
the uniform chain, i.e., seta15a2 in Eq. ~21! and take the
limit k50 in the resulting expression,x obeys the usua
-

l
-
p-

normalized Debye scaling: if one scales the frequen
with the inverse of the~single! relaxation time, and the rea
and imaginary parts are then divided by their values a
and 1, respectively, one obtains a universal curve. Howe
as mentioned in Sec. I, recently experimental work on diel
tric relaxation was reported in terms of a new scali
function @23–25# which is thought to be related to multifrac
tal scaling. In this scaling, the abscissa is
1W)log10(v/vp)/W2, and the ordinate is
log10@x9(v)vp /vDx#/W. Herex9 is the imaginary part of
x(v), W is the full width at half maximum ofx9, v is the
frequency, vp corresponds to the peak inx9, and Dx
5x(0)2x` is the static susceptibility. It is therefore inte
esting to see whether the isotopic alternating chain with
restricted dynamics leads to Nagel scaling in the same
that the model with Glauber dynamics does@26#.

Using Eqs.~18! and ~21! with k50, x can be expressed
in the form

x~v!5
~12g!~a11a2!

2

3F12 f ~a1 ,a2 ,g!

iv2l0
1

2
11 f ~a1 ,a2 ,g!

iv2l0
2 G . ~40!
4-5
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Here, the~temperature dependent! function f (a1 ,a2 ,g) is
given by

f ~a1 ,a2 ,g!5
~a12a2!224a1a2g2

~a11a2!A~a12a2!214a1a2g2
. ~41!

It should be pointed out that for the caseg50, we obtain

xg505
a1

iv12a1
1

a2

iv12a2
, ~42!

so that the general structure of the result for the susceptib
of the alternating isotopic chain is preserved irrespective
the value ofg ~i.e., of the temperature!, namely a linear
combination of two Debye-like terms.

With the aid of Eqs.~40! and ~41!, in Figs. 1–4 we
present Nagel plots for the casesa15a251, a151, and
a252, a151 anda25100, anda151 anda251000, re-
spectively, and different values of 1/T* [J/kBT. In these
figures we also include plots ofx9(v) vs v/vp which are
the natural variables of the Debye relaxation. While the fi
case~which as stated above corresponds to Debye behav!
does not show Nagel scaling, the situation somewhat
proves in the second one~where clearly improvement mean
less dispersion in the curves!, and when the two relaxation
times are not only different but very far apart~third and
fourth cases! the scaling is virtually perfect, provided th
temperature lies above some certain critical value. For c
parison, in Fig. 5 we show parallel results computed for
alternating isotopic chain with Glauber dynamics@cf. Eq.
~22!#, for the casea151 anda25100. The similarity of the
results of both models provides support to the idea that
respective of the specific dynamics, the coexistence of
ferent relaxation mechanisms lies behind the Nagel scal
and that this only occurs if a threshhold temperature is s
passed. Nevertheless, the character of the different dyna

FIG. 1. Nagel plot for the case of a uniform chain (a15a2

51). Note that the proposed scaling does not hold in this c
while, as the inset shows, the susceptibility obeys the usual De
scaling.
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manifests itself in the fact that the slopes of the decay
parts of the curves in the Nagel plot differ and the fact th
for the same values ofa1 anda2, the scaling is more closely
followed by the model with the restricted dynamics~cf. Figs.
3 and 5!.

It should be noted that, as the insets of these figures i
cate, both types of dynamics lead to two peaks inx9(v) due
to the presence of two different relaxation times. This feat
was also observed experimentally by Dixonet al. @23#,
Lesley-Pelecky and Birge@24#, and Wuet al. @25# in differ-
ent materials, and associated with thea and b relaxations.
Very recently it was also confirmed in experiments by Bra
et al. @32#, who also noted the presence of a third relaxat
process unexplained so far.

e,
ye

FIG. 2. Nagel plot fora151 anda252. Here one can see a
improvement of the scaling behavior as compared to the unifo
chain case, except at lowT* . In the inset the plot to test the per
formance with respect to the Debye scaling is presented.

FIG. 3. Same as Fig. 2, but for the choicesa151 and a2

5100. Except at lowT* values, the trend of improvement of th
agreement with the Nagel scaling is apparent, while the oppo
happens with respect to the Debye scaling.
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V. CONCLUDING REMARKS

In this paper we addressed relaxation processes and
question of the value of the dynamical critical exponent
kinetic Ising models on alternating linear chains. Two diffe
ent issues were examined in this context. In the first one,
showed that with the restricted dynamics implied by the tr
sition probabilities @cf. Eqs. ~3! and ~24!#, both in an
alternating-bond chain and in an isotopic chain the dyna
critical exponentz turns out to be exactly 2. This does n
occur if the Glauber dynamics is employed. Hence the va
of the dynamic critical exponent and the dynamics impl
by the rule of transition in kinetic models are deeply relat
As for the second issue, an analysis of Nagel plots in the c
of an alternating isotopic chain indicates that the presenc
at least two different relaxation mechanisms is required
the scaling of the susceptibility. This feature agrees w
what one finds with the usual Glauber dynamics@26#, as well
as the appearance of plateau regions in the plot if the re
ation times are widely separated, and of the existence
critical temperature below which the scaling is not followe
One may reasonably wonder at this stage whether
alternating-bond chain with restricted dynamics also ob
the Nagel scaling. Since for high temperatures this mode
equivalent to a chain with a single relaxation time, it is n
surprising that the scaling is not followed in this instanc
We have confirmed this numerically for a variety of valu
for J1 andJ2.

Although our results for the isotopic chain suggest t
the dynamics seems not to play a key role for the scaling
hold, one should bear in mind that an isotopic chain w
restricted dynamics containing only two isotopes is som
what peculiar, so that no definite conclusions on this is
can be reached at this stage. Concerning the differences
conceivable that stochasticity may well be behind the f
that the slope of the decaying parts of the curves in the Na
plots is larger for the restricted dynamics than for t

FIG. 4. Same as Figs. 2 and 3, but fora151 anda251000.
The scaling is virtually perfect in this case, except at lowT* . Note
the explicit appearance of a plateau region in the plot. The beha
here is definitely non-Debye.
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Glauber dynamics. In this respect, it is important to point o
that experiments in which the Nagel plots have been m
succesful concern glass-forming systems and that our o
nal model was built so as to reflect the topological co
straints that are assumed to be crucial in such systems.
clear that the restricted dynamics related to such constra
is also not enough to obtain the scaling, as exemplified
the case of the uniform chaina15a251. The true alternat-
ing isotopic chain with restricted dynamics examined he
on the other hand, includes both ingredients, and provide
bona fide microscopic modelin which the Nagel scaling is
shown to arise. Moreover, the fact that we obtain a lar
slope in the restricted model is consistent with the exp
mental finding that such a slope is larger for the orientati
ally disordered crystalline phase of cyclo-octanol~cf. Lesley-
Pelecky and Birge@24#! than in the originally studied linea
polymers@25#.

Notwithstanding the limitations of this model, our expe
tation is that both our earlier results@21,26# and the presen
ones provide some insight into the physical origin and va
ity of the hypothesis concerning the need for the simu
neous presence of multiple relaxation mechanisms as rel
to the proposal of the Nagel plots. A future challenge is
examine whether Nagel scaling is also present in other Is
models recently studied in connection with glassy dynam
@33#, which are based on the spin facilitated models ori
nally introduced by Fredrickson and Andersen@34#. Finally,
one can conjecture that the appearance of a third relaxa
process, as observed in the recent experiments of diele
relaxation by Brandet al. @32#, may be hopefully catered fo
within our model through the inclusion of a third relaxatio
time. The investigation of this conjecture is presently
progress.

FIG. 5. Nagel plot for an alternating isotopic chain with Glaub
dynamics witha151 anda25100 and different values of the pa
rameter TG* [kBT/2J. Here xG(v)[kBTS0

G(v)/^s0s0&`
G , with

^s0s0&`
G51/(12gG)cosh(1/TG* ) andS0

G(v) computed with the aid
of Eq. ~22!. Note the similarity of these results with respect to tho
of Fig. 3.
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