PHYSICAL REVIEW E, VOLUME 63, 026114
Relaxation in kinetic models on alternating linear chains
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A restricted dynamics, previously introduced in a kinetic model for relaxation phenomena in linear polymer
chains, is used to study the dynamic critical exponent of one-dimensional Ising models. Both an alternating
isotopic chain and an alternating-bond chain are considered. In contrast with what occurs for Glauber dynam-
ics, in these two models the dynamic critical exponent turns out to be the same. The alternating isotopic chain
with the restricted dynamics is shown to lead to Nagel scaling for temperatures above some critical value.
Further support is given relating the Nagel scaling to the existence of muigptaultaneous relaxation
processes, the dynamics apparently not playing the most important role in determining such scaling.
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I. INTRODUCTION texts not limited to critical dynamics. In fact, in a previous
paper[21] we introduced a quasi-one-dimensional kinetic
The scaling hypothesis of Halperin and Hohenbglyy Ising-like model to study relaxation phenomena in linear
relates the time scale and the correlation lengtl§, and  polymeric chains, including a region close to the glass tran-
introduces the dynamic critical exponentIn the case of sition. In our original model the chains are made upNof
Ising modelsz was for a long time believed to be universal, segments, each of which may be found in two possible ori-
depending on the nature of conserved quantities and of thosntations, and the Hamiltonian was chosen so as to reduce to
features, for instance dimensionalif2], which determine one giving the intramolecular energy of the Gibbs—di Marzio
their static universality class. However, it is now well estab-lattice mode[22]. For the stochastic dynamics, we adopted a
lished that for some simple systems this exponent is nonuniule of transition for the configurational changes which was
versal[3-9]. In particular, in the case of one-dimensional tied to the creation or disappearance of flexes. As a conse-
Glauber dynamic§10] the alternating isotopic chaiiT] pre-  quence of this restricted dynamics, only some states are se-
sents a universal behavigin the sense that it leads to the lected, and, in magnetic language, this implies that in the
same value of the dynamic critical exponent as the homogemodel the domain wall motion is through a biased random
neous chaip whereas the alternating-bond chain does notvalk. The purpose of this paper is, on the one hand, to in-
[7—18| (however, see Ref19]). This breakdown of the dy- troduce restricted dynamics into two one-dimensional alter-
namic scaling hypothesis is due to the different energy bamating kinetic Ising models that have exact solutions with the
riers determining the diffusion constant and the correlatiorGlauber dynamics, namely, the isotopic alternating chain and
length, and hence entering into the value of the dynamiche alternating-bond chain. On the other hand, we will use
exponentz. This exponent is also typically strongly affected these extensions to examine the dynamical critical exponent
when the dynamics takes place on a self-similar backgroundand, in the case of the isotopic chain, whether the inclusion
For instance, the study of the Glauber dynamics in branchingf several relaxation times may be related to multifractal
and nonbranching Koch curves as well as in the Sierpinskyehavior. This last goal is motivated by the fact that recent
gaskef 20] indicates thar is non universal. Nevertheless, an dielectric susceptibility measurements in several glass-
analysis of the critical Glauber dynamics on the Fibonacciforming systems, and covering wide ranges of temperature
chain quasicrystdl9] shows that the dynamic exponenis  and frequency[23—25, suggested that the master curve in
identical to that obtained for the alternating-bond Glaubewhich all measurements are shown to sdée Nagel plot
chain. Another interesting line of research that was also folmay be understood in terms of multiple relaxation processes.
lowed[8] is to understand how different dynamics affect theln fact the existence of simultaneous relaxation processes is
universality. This work is partly aimed as another contribu-assumed to be connected to multifractality, much in the same
tion to such an understanding. way that this concept is present in theories of chaos. Very
Kinetic Ising models were also used in a variety of con-recently we showed that an alternating isotopic chain with
Glauber dynamics leads to Nagel scal[26], and the ques-
tion arises as to the role that a particular dynamics may play
*Also at Programa de SimulacioMolecular del Instituto Mexi-  in such a scaling. By examining the model with a restricted
cano del Pefrieo. dynamics, we aim at shedding some light into this issue.
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The paper is organized as follows. Section Il deals withtually attained. This feature is shared by other purely sto-
an alternating isotopic chain, while Sec. Il is devoted to anchastic models such as the biased Ising lattice gas and its
alternating-bond chain. We derive the wave-vectormany variationg29].
frequency-dependent susceptibility, the equations governing If we now leta; anda, represent the inverses of the free
the time evolution of the wave-vector-dependent magnetizaspin relaxation times of chains composed solely of spins of
tion, and the critical exponentin both cases. In Sec. IV we species 1 or 2, respectively, then we can st a;
address the issue of whether the restricted dynamics leads to
a Debye-like scaling of the response functidias in the
uniform chain), or whether the so-called Nagel plot is useful
in the case of an isotopic alternating chain. We close th
paper in Sec. V with some concluding remarks.

(—1) a,, wherea;=(a;+ a,)/2 anda,=(a;— a,)/2.

The time dependent probabilityP(oq,05, ... ,05;t)
=P({a"},t) for a given spin configuration satisfies the mas-
Ser equation

N

dP({a™,t)
Il. ALTERNATING ISOTOPIC CHAIN —ar —21 wi(oi-1,07)P({a"}1)
The model consists of a closed linear chain whttsites N
occupied by two isotopescharacterized by two different + Wilo 1 —o)P(T oM t 4
spin relaxation timesthat are alternately arranged. The Z’l (o=, = o)P(TiteT}h D). (@)

Hamiltonian is the usual Ising Hamiltonian given by
The dynamical properties we are interested in require a

N knowledge of some moments of the probabilRy{o"},t).
H= —JZ T0j 41, (1) Hence we introduce expectation values and correlation func-

=1 tions defined as
where o; is a stochasti¢time-dependentspin variable as-
suming the values- 1, andJ is the coupling constant. The di(t)=(oi(t))= 2‘4 oiP({o"},1), (5
configuration of the chain is specified by the set of values to}
{o1,0,, ...,0n} at timet. As will be argued below, the
Hamiltonian will turn out to be not all that relevant in the rij(H)=(oi(t)oj(t))= E O'iO'J-P({a'N},t) (6)
specific calculations. Nevertheless it is necessary to define {o™}

the states involved in allowed transitions. d
Instead of considering the Glauber dynamics, we assum@"
a kind of transition associated with the motion of domain e ) ,
. . . . . N P +1)= . . +
walls. The idea is similar but not identical to previous work i, (1.t +) =0 (0)(0y(t) oy (1" +1))
by others in which either the domain wall motion is strongly

suppressed at low temperatui@s4] or is through a one- = X , ol PUaN 1) op({a™MH{aV 1),

dimensional random walk27]. In our case the transition {oM o™}

associated with théh spin takes the form (7)
T{O1, o O Tty - ON_1, TN — where® (t) is the Heaviside step function, and the sums run

over all possible configurations compatible with our rule of
{o1, - 0i_1,— 01,0111, ... ,on-1,0n), (2 motion. The second equality of Ef), which gives a formal
definition of the time-delayed correlation function, involves
and we impose a biased random walk for the domain walb({gN}HgN’},t), the conditional probability of the chain
motion[28]. In order to also account for the presence of thehaving the configuratiofio™} at timet’ +t provided it had

isotopes, we take the transition probabilities to be given bythe configuratior{a”'}={cri,cré, ..o} attimet’. Mul-
tiplying the master equation by the appropriate quantities,
Wi(oi—1,07) = ai(1—yoi_109). (3 and performing the required summations, we obtain the set

of time evolution equations that will be used in our later
Here y=tanh(/kgT), kg being the Boltzmann constant development. These are given by
andT the absolute temperature, andis the inverse of the
relaxation timer; of spini in the absence of spin interac- dq;
tions. It should be pointed out that the rule of transition ot 2«i(d=ya-1) ®)
stated in Eq(2) allows for single site excitations such that
the transitions are not correlated. Further, the choice made iand
Eq. (3) immediately implies that detailed balance does not
hold for this model and also that not every state in the phase dei j(t',t"+1)

space of the system is accessible. In particular, one should ~ — g ~Ti (1)) —2aj[ci (', +1)
note that within this model no equilibrium state exists, al-
though when the time goes to infinity a steady state is even- =G 1 (U, ' +D)]. 9
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We now impose translational invariance, and introducealready thoroughly discussed in the context of the one-

Ok, the(spatia) Fourier transform ofj;, thet’ —co limit of
the (temporal Fourier transform ofc(t',t"+t)=c; ;(t',t’
+1) (with | =j—i) denoted by|(w), andC,(w), the spatial
Fourier transform of,(w), defined through

1 -
5N ; qrexplikj), (10)

- 1 (=
Ccl(w)= imzf ¢ (t',t'+t)exp —iwt)dt, (11
t'—oo -

and

~ 1 .
Cu(@)=(010u=g 2 Clw)exp—ikl). (12

In terms of these quantities, Eq®) and (9) may be re-
written, as

dw,
T:qu’k (13)
and
iwC(w)=17"=2a[c(w) = ¥¢/_1()], (14)
respectively, where
wk=(~qk ) (15
qk*ﬂ'
—2a,(1—ye %) 2a,(1+ye k)
= _ . = 1. (1)
2a,(1—ye ™) —2a,(1+ye )

r’=lim,_.r(t) is the value of the pair correlation function

dimensional isotropic ferromagnetXY model in an inho-
mogeneous transverse figlB0]. In any case, the inverses of
the (k-dependentrelaxation timesr, of the + k'™ modes are
obtained from the real part of;, . In the critical region, that
is whenT—0 andk—0, A, ——4a;, while A\, —0. This
means that the critical mode is the one corresponding/to
As for the relaxation time, in this limit one obtains

2
N (£k)

Re(—)\;)=—7_—~ = T} (19

>
1 4(af—aj) 5_2[1
k aq
where we have identified the correlation lengthas ¢
~e’/*8T by comparing the former expression with the one of
the dynamic scaling hypothesisi/~ & *f(€k). Therefore
we find z=2, which is precisely the same result as for the
alternating isotopic Glauber cha[T]. Note, however, that
this correlation length corresponds to the one of an lIsing
model with an effective exchange constdif . This can be
easily seen by noting that the equations of motion for the
two-spin correlations are in our case formally identical to
those in the Glauber chain, but in the latteyg
=tanh(2/kgT). Interestingly enoughé also corresponds, as
expected, to the correlation length of the steady state attained
by the system. The role of the effective constdit was
already pointed out in the case of the model introduced in
Ref. [21].

Now we turn to the calculation of the other interesting
response function, namely, the frequency and wave-vector-
dependent susceptibilitys, (w), which, by virtue of the
fluctuation-dissipation theorefi31], is defined by

_<0k0—k>w (ko)
SO = T T T

(20

corresponding to the stationary solution of the equations ofvhere (oo _)..=1/(1~y coskjcosh(/kgT) is the static

motion in the limitt— oo,

correlation function, andoo_,),, the Fourier transform of

The solution to Eq(13), which yields the magnetization, the dynamic one. After some rather lengthy but not too com-

is straightforward, namely,

(1) =eMw(0). 17

The relaxation process of the wave-vector dependents, (y)=

magnetization is determined by the eigenvaluesMyf.
These are given by

Ne=—2a22\al— (@i -ad)(1-y2e 2. (19

It should be stressed that the eigenvalngscontain both

plicated algebraic manipulations starting with Ef4), we
arrive at

1

J
kgT(1—vy cosk)cosl’k—_l_
B

iw[io+2a;(1+ye )]

(iw+2a;)2— 402+ 4y (a2~ a?)e 2|

real and imaginary components. Therefore, the relaxation re- (21)
lated to the real part of the eigenvalues will in general be

modulated by the imaginary component, and care should be The result embodied in Eq21) constitutes the proper
taken in defining an adequate correlation length for the critiframework in which to discuss the issue of Nagel scaling in
cal dynamics. In fact, one can also associate this correlatiothe relaxation of a linear chain with translational invariance
length with the modulation of the oscillations. Such a corre-and restricted dynamics. This will be postponed until Sec.
lation length diverges at the critical point, and hence thdV. For the time being, we just quote the equivalent result for

modulation eventually dissapears. This kind of behavior washe isotopic chain with Glauber dynamifs,26], namely,
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5 1 As in the previous case, we now impose translational in-
Si(w)= 2] variance, and again usg, ¢;(w), andC,(w), defined in
kgT(1— chosk)cosrk—T Sec. Il to rewrite Eqs(25) and (26) as
B
i wli o+ ay(1+ ygcosk)] d®y

, rTa NPy (27)

(lw+ al)z—; yGalaz(l-i-COS X)— oz2
and
(22)
o _ , _ ioC(w)=r"—2a[c/(w)—B-1C|-1(w)], (28
which is also required for such a discussion. In the next Sec.
[1l we will consider the other simple alternating Ising chain ywhere
including the dynamics allowed by our rule of transition.

IIl. ALTERNATING-BOND CHAIN D=

e ) 29

The model consists of a closed linear chain witfsites,
and is characterized by different coupling constantéo be —2a(1—ye7 % —2ay,e K
specified below N is taken to be an even integer, and peri- Nk=(
odic conditions are also imposed. This model can be applied

in the description of dimerized structures and the Hamil- . . . T
tonian is again of the Ising type, i.e., The solution to Eq(27), which yields the magnetization, is

again straightforward, namely,

2ay,e 'k —2a(1+ yleik))' (30

N
== 2, 300741, 23 Dy (t) =N Dy(0). (3D
j=1

The eigenvalues dil, may be obtained very easily with
where the parameters and variables are defined as in Sec.thie result
Once more, and for the same reasons as above, we specify

the Hamiltonian to have a precise definition of the states that Ny = —2a(1+ \y2e TK— y2e=2K) (32
intervene in allowed transitions, but it will play no further
relevant role in the calculations that follow. and again contain real and imaginary components. Proceed-

Considering again the same kind of biased random walling as in the derivation of Eq19), we find that the critical

for the domain wall motion and the rule of transition given .4 corresponds mk . and that the relaxation time is
by Eg. (2), in this case the transition probabilities are takengiven by

to be

)2
Wi(oi-1,00)=a(l=Bi_10i-10), (29) Re(—f[)z_i~2ag‘2 +(§;) }

Tk

(33

where « is the inverse of the free spin relaxation time, -
=tanh{;/kgT), and J;= 231+ 3) - [(—1)12](3,— ). Here, considering thal; >J,, the correlation lengtlj has
HereJ, andJ2 represent the coupling constants of two dif- heen identified ag~e’2’keT by again comparing Eq(33)

ferent uniform Ising chains, respectively. It is also conve-  wp 1he dynamic scaling hypothesisri# ¢~ (k). There-
nient to introduce thle quantitiesy; = 3[tanh@y /kgT) fore, we also findz= 2 in this case, which coincides with the
tanh,/ksT)] and y,= E[tanh(Jl/an_te}nhO?/an]' SO result derived above for the isotopic chain and, consequently,
that 5; may be expressed g =y,—(—1)'y,. The analo- ¢ reqtricted dynamics produces a dynamic critical exponent
gous forms of Eqgs(8) and (9), obtained using a similar \ynich js independent of the kind of interactions in these

procedure, read models. Note that once more the correlation len§jttorre-
da, sponds to that of an Ising model with an effective constant
/R J,/2.
dt 200~ Bj-1j-0) @9 The dynamic scaling exponeatmay also be derived in
this case by an alternative argument based on domain wall
and motion. Consider the limif—0, in which critical slowing
down occurs and domains are formed. According to(E4),
de j(t',t' +1) ) L if a spinj is in the interior of the domain, in this limit
gttt —2efe (U +1) w;(oj_1,0;)—0 irrespective of the value g8;_;; on the
other hand, if spini belongs to a domain wall,
—Bj-1Cij—1(t",'+1)]. (2600  wi(oi_1,07)—2«, also independently oB;_,. Therefore,
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in the low temperatgre Iimitvv,-<vyi , So that the dyqamics __— (00— iw(io+2a+2ay,e )

of the system is equivalent to a biased random motion of theS(®)= KT T ot 202+ Aae 2K 2 2
domain wall for the Hamiltonian system, in this instance the B (lot2a)"+4a’e yz=71)
Ising model. Hence, within restricted dynamics, the relax- (OKT 1) 2iwaye

ation time r, for the decay of a domain of size (which is TG (10t 2a)2+ 4a2e 2K 2)’
the correlation length associated with the steady state of the

stochastic modglis such thatry~ &2, and may be related to (34
a biased random wall5]. To this end, leN, be the number ~With

of spins that must flip to obtain a domain of siZe (the (1—uguy)[1+uuy+(ug+uy)cosk]
correlation length of the Ising modelSince the domain has (0k0_K)»= 22 ,

the size of the biased random walk with, steps andz=1 1+ ujuz—2U;uzcos X (35)
for the biased random walk, ~Ng. On the other hand?0

~Now; 1~&/(2a). But &=¢% so thatz=2 for the (00 ) _i(14uyup)(up—uy)sink )
alternating-bond model for any choice & andJ,. Kokl u2u3—2ujucos X

Finally, for the sake of completeness, we will also com- q ho/2kaT 1 and 2. A for th ke of
pute the frequency and wave-vector-dependent susceptlbllltgn u;=tanhQ/XKgT), j=1 an gain for the sake o
omparison, and in order to correct a misprint in the formula

x() of this model. Taking the same steps as in the case Ghat appeared in Ref7], we quote the equivalent results

the isotopic chain, we find using the Glauber dynamics, namely,
()= (oo )C - iw(io+ a+2ay Scosk)
Sk = I(BT H 2 2, 'Gy2 2 2 'Gy2 G\ 2
(iw+a)?=2a%(y'®)?—(5%)?]cos K—2a2[(y ®)2+(8%)?]
N (UkU,HW}S‘ 26(560) sink 3
kBT H 2 2 'Gy2 G\ 2 2 'Gy2 G\2 ’ ( 7)
(fo+a)*=2a(y 7)°=(57)7Jcos k—2a(y °)*+(57)7]
|
with normalized Debye scaling: if one scales the frequency
6 G with the inverse of thdsingle relaxation time, and the real
o (I-ufuy)[1+ UFUS + (U +ug)cosk] and imaginary parts are then divided by their values at 0
(oko-K)== G ’ and 1, respectively, one obtains a universal curve. However,
1+ (ufu$)?—2uSugcos X _ ; , _
(39) as mentioned in Sec. |, recently experimental work on dielec-
tric relaxation was reported in terms of a new scaling
; G, ,G\(1,G_ G\ ai function[23-25 which is thought to be related to multifrac-
i(1+uju3)(u;—u7)sink ; . - . .
(UkthkM)G: s s c , (39 tal scaling. In this scaling, the abscissa is (1
1+ (u7uz)—2ujuzcos X +W)logo{ 0/ wp) /W2, and the  ordinate is

' logid X" (@) w,/ wAx]/W. Here x” is the imaginary part of
7 =stani(J;+3)/keT], 6%=—3tanf(J;—I)/keT], and  y(w), Wis the full width at half maximum of”,  is the
u=tanh(, /ksT), andj=1 and 2. This concludes our analy- frequency, w, corresponds to the peak ix”, and Ay
SIS of the alternating-bond chain with the restricted dynam—= y(0)— y.. is the static susceptibility. It is therefore inter-
ics. esting to see whether the isotopic alternating chain with the

restricted dynamics leads to Nagel scaling in the same way
IV. SUSCEPTIBILITY AND SCALING BEHAVIOR that the model with Glauber dynamics dde$].
Using Egs.(18) and (21) with k=0, xy can be expressed

Thus far, we have examined the behavior of the crltlcalIn the form

dynamic exponent. In this section we will continue our ex-

ploration by considering the scaling properties of the suscep- (1= y)(a,+ as)

tibility in the isotopic alternating chain. This is most conve- x(w)= — 5

niently done through the quantity x(w)

=kgTS(w)/{oq0p).. . It should be noted that if we look at 1—f(ay,ar,y) 1+f(ay,as,y)

the uniform chain, i.e., set;=a, in Eq. (21) and take the X - m e — - . (40
limit k=0 in the resulting expressiory obeys the usual lo—Ng lo—Ng
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al=1, a2=2

= |
< - 44 "
§Q_ éos
=s -6 - -6 1{“
Ef -8 84 éu
=] 4 22
8 -10 4 104 00
'_; -124 0 5 10 15 20 25 20 -12 4 ’ ° " (ly&p
o)/o)p
-14 T T T T T T T T T T T | 14 T T T v T T N T N 1
-4 -2 ] 2 4 6 8 -4 -2 [} 2 4 6 8
-1 -1 -
W'(1+W") log, (/o) W'(1+W") log, (/o)
FIG. 1. Nagel plot for the case of a uniform chainE a, FIG. 2. Nagel plot fora;=1 anda,=2. Here one can see an

=1). Note that the proposed scaling does not hold in this casémprovement of the scaling behavior as compared to the uniform
while, as the inset shows, the susceptibility obeys the usual Debyehain case, except at IoW*. In the inset the plot to test the per-
scaling. formance with respect to the Debye scaling is presented.

Here, the(temperature dependgniunction f(ay,a2,7) IS \anifests itself in the fact that the slopes of the decaying

given by parts of the curves in the Nagel plot differ and the fact that,
) 5 for the same values af; anda,, the scaling is more closely
¢ )= (a1—az) —4ajayy 1) followed by the model with the restricted dynamic$. Figs.
(a02.7)= (ar+ @) V(a1—az)?+4aray? 3and 3.

It should be noted that, as the insets of these figures indi-
cate, both types of dynamics lead to two peakg'ifw) due

to the presence of two different relaxation times. This feature
was also observed experimentally by Dixat al. [23],
(42 Lesley-Pelecky and BirgE24], and Wuet al.[25] in differ-
ent materials, and associated with theand 8 relaxations.

Very recently it was also confirmed in experiments by Brand

so that the genera.l struc;ure Of. thg result for th? Suscepj“b'“%t al.[32], who also noted the presence of a third relaxation
of the alternating isotopic chain is preserved irrespective o .
process unexplained so far.

the value ofy (i.e., of the temperatuje namely a linear
combination of two Debye-like terms.

With the aid of Egs.(40) and (41), in Figs. 1-4 we 2 =1, a.=100
present Nagel plots for the cases=a,=1, a;=1, and e
CY2=2, al=l al’lda2=100, anda'l=l anda2=1000, re-
spectively, and different values of Tt/=J/kgT. In these
figures we also include plots of’(w) Vs w/w, which are
the natural variables of the Debye relaxation. While the first
case(which as stated above corresponds to Debye behavior a* 61
does not show Nagel scaling, the situation somewhat im- %, 8]
proves in the second orfehere clearly improvement means ~—
less dispersion in the curvesand when the two relaxation
times are not only different but very far apdthird and o

=

It should be pointed out that for the cage-0, we obtain

a1 " Ao
Xy:o_iw-i—Zal io+2ay’

X)

® /A

o -10-

fourth casepthe scaling is virtually perfect, provided the ™

100 1000

temperature lies above some certain critical value. For com: ' Iog::(co/wp)

parison, in Fig. 5 we show parallel results computed for the -16 T T — T T
alternating isotopic chain with Glauber dynamics. Eq. 4 o0 2 ¢ ¢ 8
(22)], for the casar;=1 anda,=100. The similarity of the W (1+W') |0910 ((0/(0,,)

results of both models provides support to the idea that, ir-

respective of the specific dynamics, the coexistence of dif- FiG. 3. Same as Fig. 2, but for the choices=1 and a;
ferent relaxation mechanisms lies behind the Nagel scaling=100. Except at lowl* values, the trend of improvement of the
and that this only occurs if a threshhold temperature is Suragreement with the Nagel scaling is apparent, while the opposite
passed. Nevertheless, the character of the different dynamitappens with respect to the Debye scaling.
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[ [
o =1, &, =100

24 o,=1, 0,=1000

=

< 27

3

=R O =

D g

S w{ &

- =

= e ‘]

el Iogm((o/o)p) ) )

T T M T T M T M T T ‘4 ‘2 2 4 6 8
4 2 0 2 4 6 8

0
i W' 1+Wy |
W'1+W™ log,, (0/®) (1+W7) log,, (0/er)

FIG. 5. Nagel plot for an alternating isotopic chain with Glauber

FIG. 4. Same as Figs. 2 and 3, but ief=1 and a,=1000. dynamics witha;=1 anda,= 100 and different values of the pa-
The scaling is virtually perfect in this case, except at [6fv Note rameter T5=kgT/2J. Here XG(w)EkBTﬁ(w)/woao}G with

the explicit appearance of a plateau region in the plot. The behavi0{0000>e: 1/(1— ya)cosh(1TE) andsg(w) computed with the aid
here is definitely non-Debye. of Eq. (22). Note the similarity of these results with respect to those
of Fig. 3.

V. CONCLUDING REMARKS

In this paper we addressed relaxation processes and the . . o .
question of the value of the dynamical critical exponent inGlauber dynamics. In this respect, it is important to point out

kinetic Ising models on alternating linear chains. Two differ- hat experiments in which the Nagel plots have been more
ent issues were examined in this context. In the first one, w8Uccesful concern glass-forming systems and that our origi-
showed that with the restricted dynamics implied by the trannal model was built so as to reflect the topological con-

sition probabilities [cf. Egs. (3) and (24)], both in an straints that are assumed to be crucial in such systems. It is
alternating-bond chain and in an isotopic chain the dynami@lear that the restricted dynamics related to such constraints
critical exponentz turns out to be exactly 2. This does not is also not enough to obtain the scaling, as exemplified by
occur if the Glauber dynamics is employed. Hence the valué¢he case of the uniform chaim;= «,=1. The true alternat-

of the dynamic critical exponent and the dynamics implieding isotopic chain with restricted dynamics examined here,

by the rule of transition in kinetic models are deeply related.on the other hand, includes both ingredients, and provides a
As for the second issue, an analysis of Nagel plots in the cadsona fide microscopic mod@ which the Nagel scaling is

of an alternating isotopic chain indicates that the presence afhown to arise. Moreover, the fact that we obtain a larger

at least two different relaxation mechanisms is required fok|ope in the restricted model is consistent with the experi-

the scaling of the susceptibility. This feature agrees withmental finding that such a slope is larger for the orientation-

what one finds with the usual Glauber dynani26], as well  aly disordered crystalline phase of cyclo-octatul Lesley-

as the appearance of plateau regions in the plot if the rela)TDeIecky and Birg¢24]) than in the originally studied linear
ation times are widely separated, and of the existence of Bolymers[25].

critical temperature below which the scaling is not followed.

One may reasonably wonder at this stage whether Athtion is that both our earlier resuli21,26 and the present

alternating-bond chain with restricted dynamics also obey : P ; I .
the Nagel scaling. Since for high temperatures this model i%)nes provide some insight into the physical origin and valid

. S : T - ity of the hypothesis concerning the need for the simulta-
equivalent to a chain with a single relaxation time, it is notneo s presence of multile relaxation mechanisms as related
surprising that the scaling is not followed in this instance. us p uttip xall !

We have confirmed this numerically for a variety of values™© thg proposal of the Nagel_ plqts. A future chgllenge IS _to
for J, andJ,. examine whether Nagel scaling is also present in other Ising

Although our results for the isotopic chain suggest thatM@dels recently studied in connection with glassy dynamics
the dynamics seems not to play a key role for the scaling t433]. Which are based on the spin facilitated models origi-
hold, one should bear in mind that an isotopic chain withnally introduced by Fredrickson and Ander4@4]. Finally,
restricted dynamics containing only two isotopes is someOne can conjecture that the appearance of a third relaxation
what peculiar, so that no definite conclusions on this issu@rocess, as observed in the recent experiments of dielectric
can be reached at this stage. Concerning the differences, it islaxation by Branct al.[32], may be hopefully catered for
conceivable that stochasticity may well be behind the facwithin our model through the inclusion of a third relaxation
that the slope of the decaying parts of the curves in the Nagéime. The investigation of this conjecture is presently in
plots is larger for the restricted dynamics than for theprogress.

Notwithstanding the limitations of this model, our expec-
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